Generalized Munchausen Reinforcement Learning using Tsallis KL Divergence

27 Jan 2023  ·  Lingwei Zhu, Zheng Chen, Matthew Schlegel, Martha White ·

Many policy optimization approaches in reinforcement learning incorporate a Kullback-Leilbler (KL) divergence to the previous policy, to prevent the policy from changing too quickly. This idea was initially proposed in a seminal paper on Conservative Policy Iteration, with approximations given by algorithms like TRPO and Munchausen Value Iteration (MVI). We continue this line of work by investigating a generalized KL divergence -- called the Tsallis KL divergence -- which use the $q$-logarithm in the definition. The approach is a strict generalization, as $q = 1$ corresponds to the standard KL divergence; $q > 1$ provides a range of new options. We characterize the types of policies learned under the Tsallis KL, and motivate when $q >1$ could be beneficial. To obtain a practical algorithm that incorporates Tsallis KL regularization, we extend MVI, which is one of the simplest approaches to incorporate KL regularization. We show that this generalized MVI($q$) obtains significant improvements over the standard MVI($q = 1$) across 35 Atari games.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods