Generalized optimal sub-pattern assignment metric

This paper presents the generalized optimal sub-pattern assignment (GOSPA) metric on the space of finite sets of targets. Compared to the well-established optimal sub-pattern assignment (OSPA) metric, GOSPA is unnormalized as a function of the cardinality and it penalizes cardinality errors differently, which enables us to express it as an optimisation over assignments instead of permutations... (read more)

PDF Abstract

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet