Generalizing Multimodal Pre-training into Multilingual via Language Acquisition

29 May 2022  ·  Liang Zhang, Anwen Hu, Qin Jin ·

English-based Vision-Language Pre-training (VLP) has achieved great success in various downstream tasks. Some efforts have been taken to generalize this success to non-English languages through Multilingual Vision-Language Pre-training (M-VLP). However, due to the large number of languages, M-VLP models often require huge computing resources and cannot be flexibly extended to new languages. In this work, we propose a \textbf{M}ulti\textbf{L}ingual \textbf{A}cquisition (MLA) framework that can easily generalize a monolingual Vision-Language Pre-training model into multilingual. Specifically, we design a lightweight language acquisition encoder based on state-of-the-art monolingual VLP models. We further propose a two-stage training strategy to optimize the language acquisition encoder, namely the Native Language Transfer stage and the Language Exposure stage. With much less multilingual training data and computing resources, our model achieves state-of-the-art performance on multilingual image-text and video-text retrieval benchmarks.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here