Generate, Filter, and Rank: Grammaticality Classification for Production-Ready NLG Systems

NAACL 2019 Ashwini ChallaKartikeya UpasaniAnusha BalakrishnanRajen Subba

Neural approaches to Natural Language Generation (NLG) have been promising for goal-oriented dialogue. One of the challenges of productionizing these approaches, however, is the ability to control response quality, and ensure that generated responses are acceptable... (read more)

PDF Abstract NAACL 2019 PDF NAACL 2019 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet