Generating a Terrain-Robustness Benchmark for Legged Locomotion: A Prototype via Terrain Authoring and Active Learning

16 Aug 2022  ·  Chong Zhang, Lizhi Yang ·

Terrain-aware locomotion has become an emerging topic in legged robotics. However, it is hard to generate diverse, challenging, and realistic unstructured terrains in simulation, which limits the way researchers evaluate their locomotion policies. In this paper, we prototype the generation of a terrain dataset via terrain authoring and active learning, and the learned samplers can stably generate diverse high-quality terrains. We expect the generated dataset to make a terrain-robustness benchmark for legged locomotion. The dataset, the code implementation, and some policy evaluations are released at https://bit.ly/3bn4j7f.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here