Generating Grasp Poses for a High-DOF Gripper Using Neural Networks

1 Mar 2019Min LiuZherong PanKai XuKanishka GangulyDinesh Manocha

We present a learning-based method for representing grasp poses of a high-DOF hand using neural networks. Due to redundancy in such high-DOF grippers, there exists a large number of equally effective grasp poses for a given target object, making it difficult for the neural network to find consistent grasp poses... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet