Generating High Quality Visible Images from SAR Images Using CNNs

27 Feb 2018  ·  Puyang Wang, Vishal M. Patel ·

We propose a novel approach for generating high quality visible-like images from Synthetic Aperture Radar (SAR) images using Deep Convolutional Generative Adversarial Network (GAN) architectures. The proposed approach is based on a cascaded network of convolutional neural nets (CNNs) for despeckling and image colorization. The cascaded structure results in faster convergence during training and produces high quality visible images from the corresponding SAR images. Experimental results on both simulated and real SAR images show that the proposed method can produce visible-like images better compared to the recent state-of-the-art deep learning-based methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here