Adaptive Generation of Unrestricted Adversarial Inputs

7 May 2019  ·  Isaac Dunn, Hadrien Pouget, Tom Melham, Daniel Kroening ·

Neural networks are vulnerable to adversarially-constructed perturbations of their inputs. Most research so far has considered perturbations of a fixed magnitude under some $l_p$ norm. Although studying these attacks is valuable, there has been increasing interest in the construction of (and robustness to) unrestricted attacks, which are not constrained to a small and rather artificial subset of all possible adversarial inputs. We introduce a novel algorithm for generating such unrestricted adversarial inputs which, unlike prior work, is adaptive: it is able to tune its attacks to the classifier being targeted. It also offers a 400-2,000x speedup over the existing state of the art. We demonstrate our approach by generating unrestricted adversarial inputs that fool classifiers robust to perturbation-based attacks. We also show that, by virtue of being adaptive and unrestricted, our attack is able to defeat adversarial training against it.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here