Generative Adversarial Model-Based Optimization via Source Critic Regularization

9 Feb 2024  ·  Michael S. Yao, Yimeng Zeng, Hamsa Bastani, Jacob Gardner, James C. Gee, Osbert Bastani ·

Offline model-based optimization seeks to optimize against a learned surrogate model without querying the true oracle objective function during optimization. Such tasks are commonly encountered in protein design, robotics, and clinical medicine where evaluating the oracle function is prohibitively expensive. However, inaccurate surrogate model predictions are frequently encountered along offline optimization trajectories. To address this limitation, we propose generative adversarial model-based optimization using adaptive source critic regularization (aSCR) -- a task- and optimizer- agnostic framework for constraining the optimization trajectory to regions of the design space where the surrogate function is reliable. We propose a computationally tractable algorithm to dynamically adjust the strength of this constraint, and show how leveraging aSCR with standard Bayesian optimization outperforms existing methods on a suite of offline generative design tasks. Our code is available at https://github.com/michael-s-yao/gabo

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here