Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision

13 Apr 2024  ·  Zhe Wang, Jiayi Zhang, Hongyang Du, Ruichen Zhang, Dusit Niyato, Bo Ai, Khaled B. Letaief ·

Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable. In this paper, we study generative artificial intelligence (AI) agent-enabled next-generation MIMO design. Firstly, we provide an overview of the development, fundamentals, and challenges of the next-generation MIMO. Then, we propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents with the aid of large language model (LLM) and retrieval augmented generation (RAG). Next, we comprehensively discuss the features and advantages of the generative AI agent framework. More importantly, to tackle existing challenges of next-generation MIMO, we discuss generative AI agent-enabled next-generation MIMO design, from the perspective of performance analysis, signal processing, and resource allocation. Furthermore, we present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis in complex configuration scenarios. These examples highlight how the integration of generative AI agents can significantly enhance the analysis and design of next-generation MIMO systems. Finally, we discuss important potential research future directions.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here