Generative Well-intentioned Networks

NeurIPS 2019  ·  Justin Cosentino, Jun Zhu ·

We propose Generative Well-intentioned Networks (GWINs), a novel framework for increasing the accuracy of certainty-based, closed-world classifiers. A conditional generative network recovers the distribution of observations that the classifier labels correctly with high certainty. We introduce a reject option to the classifier during inference, allowing the classifier to reject an observation instance rather than predict an uncertain label. These rejected observations are translated by the generative network to high-certainty representations, which are then relabeled by the classifier. This architecture allows for any certainty-based classifier or rejection function and is not limited to multilayer perceptrons. The capability of this framework is assessed using benchmark classification datasets and shows that GWINs significantly improve the accuracy of uncertain observations.

PDF Abstract NeurIPS 2019 PDF NeurIPS 2019 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here