Application of Genetic Algorithm for More Efficient Multi-Layer Thickness Optimization in Solar Cells

Thin-film solar cells are predominately designed similar to a stacked structure. Optimizing the layer thicknesses in this stack structure is crucial to extract the best efficiency of the solar cell. The commonplace method used in optimization simulations, such as for optimizing the optical spacer layers' thicknesses, is the parameter sweep. Our simulation study shows that the implementation of a meta-heuristic method like the genetic algorithm results in a significantly faster and accurate search method when compared to the brute-force parameter sweep method in both single and multi-layer optimization. While other sweep methods can also outperform the brute-force method, they do not consistently exhibit $100\%$ accuracy in the optimized results like our genetic algorithm. We have used a well-studied P3HT-based structure to test our algorithm. Our best-case scenario was observed to use $60.84\%$ fewer simulations than the brute-force method.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here