Geo-Spatio-Temporal Information Based 3D Cooperative Positioning in LOS/NLOS Mixed Environments

2 Sep 2022  ·  Yue Cao, Shaoshi Yang, Zhiyong Feng ·

We propose a geographic and spatio-temporal information based distributed cooperative positioning (GSTICP) algorithm for wireless networks that require three-dimensional (3D) coordinates and operate in the line-of-sight (LOS) and nonline-of-sight (NLOS) mixed environments. First, a factor graph (FG) is created by factorizing the a posteriori distribution of the position-vector estimates and mapping the spatial-domain and temporal-domain operations of nodes onto the FG. Then, we exploit a geographic information based NLOS identification scheme to reduce the performance degradation caused by NLOS measurements. Furthermore, we utilize a finite symmetric sampling based scaled unscented transform (SUT) method to approximate the nonlinear terms of the messages passing on the FG with high precision, despite using only a small number of samples. Finally, we propose an enhanced anchor upgrading (EAU) mechanism to avoid redundant iterations. Our GSTICP algorithm supports any type of ranging measurement that can determine the distance between nodes. Simulation results and analysis demonstrate that our GSTICP has a lower computational complexity than the state-of-the-art belief propagation (BP) based localizers, while achieving an even more competitive positioning performance.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here