Geometric Losses for Distributional Learning

15 May 2019  ·  Arthur Mensch, Mathieu Blondel, Gabriel Peyré ·

Building upon recent advances in entropy-regularized optimal transport, and upon Fenchel duality between measures and continuous functions , we propose a generalization of the logistic loss that incorporates a metric or cost between classes. Unlike previous attempts to use optimal transport distances for learning, our loss results in unconstrained convex objective functions, supports infinite (or very large) class spaces, and naturally defines a geometric generalization of the softmax operator. The geometric properties of this loss make it suitable for predicting sparse and singular distributions, for instance supported on curves or hyper-surfaces. We study the theoretical properties of our loss and show-case its effectiveness on two applications: ordinal regression and drawing generation.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods