Geometric Median (GM) Matching for Robust Data Pruning

25 Jun 2024  ·  Anish Acharya, Inderjit S Dhillon, Sujay Sanghavi ·

Large-scale data collections in the wild, are invariably noisy. Thus developing data pruning strategies that remain robust even in the presence of corruption is critical in practice. In this work, we propose Geometric Median ($\gm$) Matching -- a herding style greedy algorithm that yields a $k$-subset such that the mean of the subset approximates the geometric median of the (potentially) noisy dataset. Theoretically, we show that $\gm$ Matching enjoys an improved $\gO(1/k)$ scaling over $\gO(1/\sqrt{k})$ scaling of uniform sampling; while achieving {\bf optimal breakdown point} of {\bf 1/2} even under {\bf arbitrary} corruption. Extensive experiments across several popular deep learning benchmarks indicate that $\gm$ Matching consistently improves over prior state-of-the-art; the gains become more profound at high rates of corruption and aggressive pruning rates; making $\gm$ Matching a strong baseline for future research in robust data pruning.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods