Geometrically Convergent Distributed Optimization with Uncoordinated Step-Sizes

19 Sep 2016  ·  Angelia Nedić, Alex Olshevsky, Wei Shi, César A. Uribe ·

A recent algorithmic family for distributed optimization, DIGing's, have been shown to have geometric convergence over time-varying undirected/directed graphs. Nevertheless, an identical step-size for all agents is needed. In this paper, we study the convergence rates of the Adapt-Then-Combine (ATC) variation of the DIGing algorithm under uncoordinated step-sizes. We show that the ATC variation of DIGing algorithm converges geometrically fast even if the step-sizes are different among the agents. In addition, our analysis implies that the ATC structure can accelerate convergence compared to the distributed gradient descent (DGD) structure which has been used in the original DIGing algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here