Geometry-aware stationary subspace analysis

25 May 2016  ·  Inbal Horev, Florian Yger, Masashi Sugiyama ·

In many real-world applications data exhibits non-stationarity, i.e., its distribution changes over time. One approach to handling non-stationarity is to remove or minimize it before attempting to analyze the data. In the context of brain computer interface (BCI) data analysis this may be done by means of stationary subspace analysis (SSA). The classic SSA method finds a matrix that projects the data onto a stationary subspace by optimizing a cost function based on a matrix divergence. In this work we present an alternative method for SSA based on a symmetrized version of this matrix divergence. We show that this frames the problem in terms of distances between symmetric positive definite (SPD) matrices, suggesting a geometric interpretation of the problem. Stemming from this geometric viewpoint, we introduce and analyze a method which utilizes the geometry of the SPD matrix manifold and the invariance properties of its metrics. Most notably we show that these invariances alleviate the need to whiten the input matrices, a common step in many SSA methods which often introduces errors. We demonstrate the usefulness of our technique in experiments on both synthesized and real-world data.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here