Geometry matters: Exploring language examples at the decision boundary

14 Oct 2020  ·  Debajyoti Datta, Shashwat Kumar, Laura Barnes, Tom Fletcher ·

A growing body of recent evidence has highlighted the limitations of natural language processing (NLP) datasets and classifiers. These include the presence of annotation artifacts in datasets, classifiers relying on shallow features like a single word (e.g., if a movie review has the word "romantic", the review tends to be positive), or unnecessary words (e.g., learning a proper noun to classify a movie as positive or negative). The presence of such artifacts has subsequently led to the development of challenging datasets to force the model to generalize better. While a variety of heuristic strategies, such as counterfactual examples and contrast sets, have been proposed, the theoretical justification about what makes these examples difficult for the classifier is often lacking or unclear. In this paper, using tools from information geometry, we propose a theoretical way to quantify the difficulty of an example in NLP. Using our approach, we explore difficult examples for several deep learning architectures. We discover that both BERT, CNN and fasttext are susceptible to word substitutions in high difficulty examples. These classifiers tend to perform poorly on the FIM test set. (generated by sampling and perturbing difficult examples, with accuracy dropping below 50%). We replicate our experiments on 5 NLP datasets (YelpReviewPolarity, AGNEWS, SogouNews, YelpReviewFull and Yahoo Answers). On YelpReviewPolarity we observe a correlation coefficient of -0.4 between resilience to perturbations and the difficulty score. Similarly we observe a correlation of 0.35 between the difficulty score and the empirical success probability of random substitutions. Our approach is simple, architecture agnostic and can be used to study the fragilities of text classification models. All the code used will be made publicly available, including a tool to explore the difficult examples for other datasets.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods