Get More With Less: Near Real-Time Image Clustering on Mobile Phones

9 Dec 2015Jorge OrtizChien-Chin HuangSupriyo Chakraborty

Machine learning algorithms, in conjunction with user data, hold the promise of revolutionizing the way we interact with our phones, and indeed their widespread adoption in the design of apps bear testimony to this promise. However, currently, the computationally expensive segments of the learning pipeline, such as feature extraction and model training, are offloaded to the cloud, resulting in an over-reliance on the network and under-utilization of computing resources available on mobile platforms... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet