GeXSe (Generative Explanatory Sensor System): An Interpretable Deep Generative Model for Human Activity Recognition in Smart Spaces

28 Jun 2023  ·  Yuan Sun, Nandana Pai, Viswa Vijeth Ramesh, Murtadha Aldeer, Jorge Ortiz ·

We introduce GeXSe (Generative Explanatory Sensor System), a novel framework designed to extract interpretable sensor-based and vision domain features from non-invasive smart space sensors. We combine these to provide a comprehensive explanation of sensor-activation patterns in activity recognition tasks. This system leverages advanced machine learning architectures, including transformer blocks, Fast Fourier Convolution (FFC), and diffusion models, to provide a more detailed understanding of sensor-based human activity data. A standout feature of GeXSe is our unique Multi-Layer Perceptron (MLP) with linear, ReLU, and normalization layers, specially devised for optimal performance on small datasets. It also yields meaningful activation maps to explain sensor-based activation patterns. The standard approach is based on a CNN model, which our MLP model outperforms.GeXSe offers two types of explanations: sensor-based activation maps and visual domain explanations using short videos. These methods offer a comprehensive interpretation of the output from non-interpretable sensor data, thereby augmenting the interpretability of our model. Utilizing the Frechet Inception Distance (FID) for evaluation, it outperforms established methods, improving baseline performance by about 6\%. GeXSe also achieves a high F1 score of up to 0.85, demonstrating precision, recall, and noise resistance, marking significant progress in reliable and explainable smart space sensing systems.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods