GFTE: Graph-based Financial Table Extraction

17 Mar 2020  ·  Yiren Li, Zheng Huang, Junchi Yan, Yi Zhou, Fan Ye, Xianhui Liu ·

Tabular data is a crucial form of information expression, which can organize data in a standard structure for easy information retrieval and comparison. However, in financial industry and many other fields tables are often disclosed in unstructured digital files, e.g. Portable Document Format (PDF) and images, which are difficult to be extracted directly. In this paper, to facilitate deep learning based table extraction from unstructured digital files, we publish a standard Chinese dataset named FinTab, which contains more than 1,600 financial tables of diverse kinds and their corresponding structure representation in JSON. In addition, we propose a novel graph-based convolutional neural network model named GFTE as a baseline for future comparison. GFTE integrates image feature, position feature and textual feature together for precise edge prediction and reaches overall good results.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here