Ghost Imaging Based on Recurrent Neural Network

1 Dec 2021  ·  Yuchen He, Sihong Duan, Jianxing Li, Hui Chen, Huaibin Zheng, Jianbin Liu, Yu Zhou, Zhuo Xu ·

Benefit from the promising features of second-order correlation, ghost imaging (GI) has received extensive attentions in recent years. Simultaneously, GI is affected by the poor trade-off between sampling rate and imaging quality. The traditional image reconstruction method in GI is to accumulate the action result of each speckle and the corresponding bucket signal. We found that the image reconstruction process of GI is very similar to the Recurrent Neural Network (RNN), which is one of the deep learning algorithm. In this paper, we proposed a novel method that effectively implements GI on the RNN architecture, called GI-RNN. The state of each layer in RNN is determined by the output of the previous layer and the input of this layer, and the output of the network is the sum of all previous states. Therefore, we take the speckle of each illumination and the corresponding bucket signal as the input of each layer, and the output of the network is the sum of all previous speckle and bucket signal, which is the image of the target. The testing results show that the proposed method can achieve image reconstruction at a very low sampling rate (0.38$\%$). Moreover, we compare GI-RNN with traditional GI algorithm and compressed sensing algorithm. The results of different targets show that GI-RNN is 6.61 dB higher than compressed sensing algorithm and 12.58 dB higher than traditional GI algorithm on average. In our view, the proposed method makes an important step to applications of GI.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here