Giant Inverse Rashba-Edelstein Effect: Application to Monolayer OsBi$_2$

11 Mar 2021  ·  Rui Song, Ning Hao, Ping Zhang ·

We propose that the hybridization between two sets of Rashba bands can lead to an unconventional topology where the two Fermi circles from different bands own in-plane helical spin textures with the same chiralities, and possess group velocities with the same directions. Under the weak spin injection, the two Fermi circles both give the positive contributions to the spin-to-charge conversion and thus induce the giant inverse Rashba-Edelstein Effect with large conversion efficiency, which is very different from the conventional Rashba-Edelstein Effect. More importantly, through the first-principles calculations, we predict that monolayer OsBi2 could be a good candidate to realize the giant inverse Rashba-Edelstein Effect. Our studies not only demonstrate a new mechanism to achieve highly efficient spin-to-charge conversion in spintronics, but also provide a promising material to realize it.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Materials Science Mesoscale and Nanoscale Physics