Giant magnetic anisotropy energy and long coherence time of uranium substitution on defected Al2O3(0001)

14 Jul 2020  ·  Jie Li, Lei Gu, Ruqian Wu ·

Nanomagnets with giant magnetic anisotropy energy and long coherence time are desired for various technological innovations such as quantum information procession and storage. Based on the first-principles calculations and model analyses, we demonstrate that a single uranium atom substituting Al on the Al2O3(0001) surface may have high structural stability and large magnetic anisotropy energy up to 48 meV per uranium atom. As the magnetization resides in the localized f-shell and is not much involved in chemical bonding with neighbors, long coherence time up to ~1.6 mS can be achieved for the quantum spin states. These results suggest a new strategy for the search of ultrasmall magnetic units for diverse applications in the quantum information era.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Materials Science Computational Physics