GL-Disen: Global-Local disentanglement for unsupervised learning of graph-level representations

1 Jan 2021  ·  Thilini Cooray, Ngai-Man Cheung, Wei Lu ·

Graph-level representation learning plays a crucial role in a variety of tasks such as molecular property prediction and community analysis. Currently, several models based on mutual information maximization have shown strong performance on the task of unsupervised graph representation learning. In this paper, instead, we consider a disentanglement approach to learn graph-level representations in the unsupervised setting. Our work is the first to study disentanglement learning for graph-level representations. Our key observation is that the formation of many real-world graphs is a complex process with global and local generative factors. We hypothesize that disentangled representations which capture these global and local generative factors into independent latent units can be highly beneficial. Specifically, for graph-level representation learning, our disentanglement approach can alleviate distraction due to local variations of individual nodes or individual local neighbourhoods. We propose a VAE based learning algorithm to disentangle the global graph-level information, which is common across the entire graph, and local patch-level information, which varies across individual patches (the local subgraphs centered around the nodes). Through extensive experiments and analysis, we show that our method achieves the state-of-the-art performance on the task of unsupervised graph representation learning.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods