Global Convergence and Induced Kernels of Gradient-Based Meta-Learning with Neural Nets

25 Jun 2020 Haoxiang Wang Ruoyu Sun Bo Li

Gradient-based meta-learning (GBML) with deep neural nets (DNNs) has become a popular approach for few-shot learning. However, due to the non-convexity of DNNs and the complex bi-level optimization in GBML, the theoretical properties of GBML with DNNs remain largely unknown... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet