Global entity alignment with Gated Latent Space Neighborhood Aggregation

CCL 2021  ·  Chen Wei, Chen Xiaoying, Xiong Shengwu ·

“Existing entity alignment models mainly use the topology structure of the original knowledge graph and have achieved promising performance. However they are still challenged by the heterogeneous topological neighborhood structures which could cause the models to produce different representations of counterpart entities. In the paper we propose a global entity alignment model with gated latent space neighborhood aggregation (LatsEA) to address this challenge. Latent space neighborhood is formed by calculating the similarity between the entity embeddings it can introduce long-range neighbors to expand the topological neighborhood and reconcile the heterogeneous neighborhood structures. Meanwhile it uses vanilla GCN to aggregate the topological neighborhood and latent space neighborhood respectively. Then it uses an average gating mechanism to aggregate topological neighborhood information and latent space neighborhood information of the central entity. In order to further consider the interdependence between entity alignment decisions we propose a global entity alignment strategy i.e. formulate entity alignment as the maximum bipartite matching problem which is effectively solved by Hungarian algorithm. Our experiments with ablation studies on three real-world entity alignment datasets prove the effectiveness of the proposed model. Latent space neighborhood informationand global entity alignment decisions both contributes to the entity alignment performance improvement.”

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here