Global-Local Temporal Representations For Video Person Re-Identification

ICCV 2019 Jianing LiJingdong WangQi TianWen GaoShiliang Zhang

This paper proposes the Global-Local Temporal Representation (GLTR) to exploit the multi-scale temporal cues in video sequences for video person Re-Identification (ReID). GLTR is constructed by first modeling the short-term temporal cues among adjacent frames, then capturing the long-term relations among inconsecutive frames... (read more)

PDF Abstract ICCV 2019 PDF ICCV 2019 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet