Global Prompt Cell: A Portable Control Module for Effective Prompt Tuning

12 Apr 2023  ·  Chi Liu, Haochun Wang, Nuwa Xi, Sendong Zhao, Bing Qin ·

As a novel approach to tuning pre-trained models, prompt tuning involves freezing the parameters in downstream tasks while inserting trainable embeddings into inputs in the first layer. However, previous methods have mainly focused on the initialization of prompt embeddings. The strategy of training and utilizing prompt embeddings in a reasonable way has become a limiting factor in the effectiveness of prompt tuning. To address this issue, we introduce the Global Prompt Cell (GPC), a portable control module for prompt tuning that selectively preserves prompt information across all encoder layers. Our experimental results demonstrate a 5.8% improvement on SuperGLUE datasets compared to vanilla prompt tuning.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here