Global Search with Bernoulli Alternation Kernel for Task-oriented Grasping Informed by Simulation

10 Oct 2018  ·  Rika Antonova, Mia Kokic, Johannes A. Stork, Danica Kragic ·

We develop an approach that benefits from large simulated datasets and takes full advantage of the limited online data that is most relevant. We propose a variant of Bayesian optimization that alternates between using informed and uninformed kernels. With this Bernoulli Alternation Kernel we ensure that discrepancies between simulation and reality do not hinder adapting robot control policies online. The proposed approach is applied to a challenging real-world problem of task-oriented grasping with novel objects. Our further contribution is a neural network architecture and training pipeline that use experience from grasping objects in simulation to learn grasp stability scores. We learn task scores from a labeled dataset with a convolutional network, which is used to construct an informed kernel for our variant of Bayesian optimization. Experiments on an ABB Yumi robot with real sensor data demonstrate success of our approach, despite the challenge of fulfilling task requirements and high uncertainty over physical properties of objects.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here