Global Synchronization of Clocks in Directed Rooted Acyclic Graphs: A Hybrid Systems Approach

7 Apr 2019  ·  Muhammad U. Javed, Jorge I. Poveda, Xudong Chen ·

In this paper, we study the problem of robust global synchronization of resetting clocks in multi-agent networked systems, where by robust global synchronization we mean synchronization that is insensitive to arbitrarily small disturbances, and which is achieved from all initial conditions. In particular, we aim to address the following question: Given a set of homogeneous agents with periodic clocks sharing the same parameters, what kind of information flow topologies will guarantee that the resulting networked systems can achieve robust global synchronization? To address this question, we rely on the framework of robust hybrid dynamical systems and a class of distributed hybrid resetting algorithms. Using the hybrid-system approach, we provide a partial solution to the question: Specifically, we show that one can achieve robust global synchronization with no purely discrete-time solutions in any networked system whose underlying information flow topology is a rooted acyclic digraph. Such a result is complementary to the existing result [1] in which strongly connected digraphs are considered as the underlying information flow topologies of the networked systems. We have further computed in the paper the convergence time for a networked system to reach global synchronization. In particular, the computation reveals the relationship between convergence time and the structure of the underlying digraph. We illustrate our theoretical findings via numerical simulations towards the end of the paper.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Systems and Control

Datasets


  Add Datasets introduced or used in this paper