Globally optimal score-based learning of directed acyclic graphs in high-dimensions

NeurIPS 2019 Bryon AragamArash AminiQing Zhou

We prove that $\Omega(s\log p)$ samples suffice to learn a sparse Gaussian directed acyclic graph (DAG) from data, where $s$ is the maximum Markov blanket size. This improves upon recent results that require $\Omega(s^{4}\log p)$ samples in the equal variance case... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.