GOATS: Goal Sampling Adaptation for Scooping with Curriculum Reinforcement Learning

In this work, we first formulate the problem of robotic water scooping using goal-conditioned reinforcement learning. This task is particularly challenging due to the complex dynamics of fluids and the need to achieve multi-modal goals. The policy is required to successfully reach both position goals and water amount goals, which leads to a large convoluted goal state space. To overcome these challenges, we introduce Goal Sampling Adaptation for Scooping (GOATS), a curriculum reinforcement learning method that can learn an effective and generalizable policy for robot scooping tasks. Specifically, we use a goal-factorized reward formulation and interpolate position goal distributions and amount goal distributions to create curriculum throughout the learning process. As a result, our proposed method can outperform the baselines in simulation and achieves 5.46% and 8.71% amount errors on bowl scooping and bucket scooping tasks, respectively, under 1000 variations of initial water states in the tank and a large goal state space. Besides being effective in simulation environments, our method can efficiently adapt to noisy real-robot water-scooping scenarios with diverse physical configurations and unseen settings, demonstrating superior efficacy and generalizability. The videos of this work are available on our project page:

Results in Papers With Code
(↓ scroll down to see all results)