Goodness-of-Fit Tests for Inhomogeneous Random Graphs

ICML 2020 Soham DanBhaswar B. Bhattacharya

Hypothesis testing of random networks is an emerging area of modern research, especially in the high-dimensional regime, where the number of samples is smaller or comparable to the size of the graph. In this paper we consider the goodness-of-fit testing problem for large inhomogeneous random (IER) graphs, where given a (known) reference symmetric matrix $Q \in [0, 1]^{n \times n}$ and $m$ independent samples from an IER graph given by an unknown symmetric matrix $P \in [0, 1]^{n \times n}$, the goal is to test the hypothesis $P=Q$ versus $||P-Q|| \geq \varepsilon$, where $||\cdot||$ is some specified norm on symmetric matrices... (read more)

PDF ICML 2020 PDF

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet