GPSP: Graph Partition and Space Projection based Approach for Heterogeneous Network Embedding

7 Mar 2018  ·  Wenyu Du, Shuai Yu, Min Yang, Qiang Qu, Jia Zhu ·

In this paper, we propose GPSP, a novel Graph Partition and Space Projection based approach, to learn the representation of a heterogeneous network that consists of multiple types of nodes and links. Concretely, we first partition the heterogeneous network into homogeneous and bipartite subnetworks... Then, the projective relations hidden in bipartite subnetworks are extracted by learning the projective embedding vectors. Finally, we concatenate the projective vectors from bipartite subnetworks with the ones learned from homogeneous subnetworks to form the final representation of the heterogeneous network. Extensive experiments are conducted on a real-life dataset. The results demonstrate that GPSP outperforms the state-of-the-art baselines in two key network mining tasks: node classification and clustering. read more

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here