GraATP: A Graph Theoretic Approach for Automated Theorem Proving in Plane Geometry

18 Dec 2014  ·  Mohammad Murtaza Mahmud, Swakkhar Shatabda, Mohammad Nurul Huda ·

Automated Theorem Proving (ATP) is an established branch of Artificial Intelligence. The purpose of ATP is to design a system which can automatically figure out an algorithm either to prove or disprove a mathematical claim, on the basis of a set of given premises, using a set of fundamental postulates and following the method of logical inference. In this paper, we propose GraATP, a generalized framework for automated theorem proving in plane geometry. Our proposed method translates the geometric entities into nodes of a graph and the relations between them as edges of that graph. The automated system searches for different ways to reach the conclusion for a claim via graph traversal by which the validity of the geometric theorem is examined.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here