Gradient-based learning for F-measure and other performance metrics

ICLR 2019  ·  Yu Gai, Zheng Zhang, Kyunghyun Cho ·

Many important classification performance metrics, e.g. $F$-measure, are non-differentiable and non-decomposable, and are thus unfriendly to gradient descent algorithm. Consequently, despite their popularity as evaluation metrics, these metrics are rarely optimized as training objectives in neural network community. In this paper, we propose an empirical utility maximization scheme with provable learning guarantees to address the non-differentiability of these metrics. We then derive a strongly consistent gradient estimator to handle non-decomposability. These innovations enable end-to-end optimization of these metrics with the same computational complexity as optimizing a decomposable and differentiable metric, e.g. cross-entropy loss.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here