Gradient density estimation in arbitrary finite dimensions using the method of stationary phase

13 Nov 2012  ·  Karthik S. Gurumoorthy, Anand Rangarajan, John Corring ·

We prove that the density function of the gradient of a sufficiently smooth function $S : \Omega \subset \mathbb{R}^d \rightarrow \mathbb{R}$, obtained via a random variable transformation of a uniformly distributed random variable, is increasingly closely approximated by the normalized power spectrum of $\phi=\exp\left(\frac{iS}{\tau}\right)$ as the free parameter $\tau \rightarrow 0$. The result is shown using the stationary phase approximation and standard integration techniques and requires proper ordering of limits. We highlight a relationship with the well-known characteristic function approach to density estimation, and detail why our result is distinct from this approach.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here