Gradient density estimation in arbitrary finite dimensions using the method of stationary phase

We prove that the density function of the gradient of a sufficiently smooth function $S : \Omega \subset \mathbb{R}^d \rightarrow \mathbb{R}$, obtained via a random variable transformation of a uniformly distributed random variable, is increasingly closely approximated by the normalized power spectrum of $\phi=\exp\left(\frac{iS}{\tau}\right)$ as the free parameter $\tau \rightarrow 0$. The result is shown using the stationary phase approximation and standard integration techniques and requires proper ordering of limits... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet