Gradient Descent Only Converges to Minimizers: Non-Isolated Critical Points and Invariant Regions

2 May 2016  ·  Ioannis Panageas, Georgios Piliouras ·

Given a non-convex twice differentiable cost function f, we prove that the set of initial conditions so that gradient descent converges to saddle points where \nabla^2 f has at least one strictly negative eigenvalue has (Lebesgue) measure zero, even for cost functions f with non-isolated critical points, answering an open question in [Lee, Simchowitz, Jordan, Recht, COLT2016]. Moreover, this result extends to forward-invariant convex subspaces, allowing for weak (non-globally Lipschitz) smoothness assumptions... Finally, we produce an upper bound on the allowable step-size. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here