We analyze algorithms for approximating a function $f(x) = \Phi x$ mapping $\Re^d$ to $\Re^d$ using deep linear neural networks, i.e. that learn a function $h$ parameterized by matrices $\Theta_1,...,\Theta_L$ and defined by $h(x) = \Theta_L \Theta_{L-1} ... \Theta_1 x$. We focus on algorithms that learn through gradient descent on the population quadratic loss in the case that the distribution over the inputs is isotropic... (read more)
PDF AbstractMETHOD | TYPE | |
---|---|---|
🤖 No Methods Found | Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet |