Gradient Information for Representation and Modeling

NeurIPS 2019  ·  Jie Ding, Robert Calderbank, Vahid Tarokh ·

Motivated by Fisher divergence, in this paper we present a new set of information quantities which we refer to as gradient information. These measures serve as surrogates for classical information measures such as those based on logarithmic loss, Kullback-Leibler divergence, directed Shannon information, etc. in many data-processing scenarios of interest, and often provide significant computational advantage, improved stability and robustness. As an example, we apply these measures to the Chow-Liu tree algorithm, and demonstrate remarkable performance and significant computational reduction using both synthetic and real data.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here