GraftNet: An Engineering Implementation of CNN for Fine-grained Multi-label Task

27 Apr 2020Chunhua JiaLei ZhangHui HuangWeiwei CaiHao HuRohan Adivarekar

Multi-label networks with branches are proved to perform well in both accuracy and speed, but lacks flexibility in providing dynamic extension onto new labels due to the low efficiency of re-work on annotating and training. For multi-label classification task, to cover new labels we need to annotate not only newly collected images, but also the previous whole dataset to check presence of these new labels... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet