Graph Conditional Variational Models: Too Complex for Multiagent Trajectories?

Recent advances in modeling multiagent trajectories combine graph architectures such as graph neural networks (GNNs) with conditional variational models (CVMs) such as variational RNNs (VRNNs). Originally, CVMs have been proposed to facilitate learning with multi-modal and structured data and thus seem to perfectly match the requirements of multi-modal multiagent trajectories with their structured output spaces. Empirical results of VRNNs on trajectory data support this assumption. In this paper, we revisit experiments and proposed architectures with additional rigour, ablation runs and baselines. In contrast to common belief, we show that prior results with CVMs on trajectory data might be misleading. Given a neural network with a graph architecture and/or structured output function, variational autoencoding does not seem to contribute statistically significantly to empirical performance. Instead, we show that well-known emission functions do contribute, while coming with less complexity, engineering and computation time.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here