Graph Decoupling Attention Markov Networks for Semi-supervised Graph Node Classification

28 Apr 2021  ·  Jie Chen, Shouzhen Chen, Mingyuan Bai, Jian Pu, Junping Zhang, Junbin Gao ·

Graph neural networks (GNN) have been ubiquitous in graph node classification tasks. Most of GNN methods update the node embedding iteratively by aggregating its neighbors' information. However, they often suffer from negative disturbance, due to edges connecting nodes with different labels. One approach to alleviate this negative disturbance is to use attention to learn the weights of aggregation, but current attention-based GNNs only consider feature similarity and also suffer from the lack of supervision. In this paper, we consider the label dependency of graph nodes and propose a decoupling attention mechanism to learn both hard and soft attention. The hard attention is learned on labels for a refined graph structure with fewer inter-class edges, so that the aggregation's negative disturbance can be reduced. The soft attention aims to learn the aggregation weights based on features over the refined graph structure to enhance information gains during message passing. Particularly, we formulate our model under the EM framework, and the learned attention is used to guide the label propagation in the M-step and the feature propagation in the E-step, respectively. Extensive experiments are performed on six well-known benchmark graph datasets to verify the effectiveness of the proposed method.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here