Graph Fourier transform based on singular value decomposition of directed Laplacian

12 May 2022  ·  Yang Chen, Cheng Cheng, Qiyu Sun ·

Graph Fourier transform (GFT) is a fundamental concept in graph signal processing. In this paper, based on singular value decomposition of Laplacian, we introduce a novel definition of GFT on directed graphs, and use singular values of Laplacian to carry the notion of graph frequencies. % of the proposed GFT. The proposed GFT is consistent with the conventional GFT in the undirected graph setting, and on directed circulant graphs, the proposed GFT is the classical discrete Fourier transform, up to some rotation, permutation and phase adjustment. We show that frequencies and frequency components of the proposed GFT can be evaluated by solving some constrained minimization problems with low computational cost. Numerical demonstrations indicate that the proposed GFT could represent graph signals with different modes of variation efficiently.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here