Graph Fourier Transform with Negative Edges for Depth Image Coding

10 Feb 2017  ·  Weng-Tai Su, Gene Cheung, Chia-Wen Lin ·

Recent advent in graph signal processing (GSP) has led to the development of new graph-based transforms and wavelets for image / video coding, where the underlying graph describes inter-pixel correlations. In this paper, we develop a new transform called signed graph Fourier transform (SGFT), where the underlying graph G contains negative edges that describe anti-correlations between pixel pairs. Specifically, we first construct a one-state Markov process that models both inter-pixel correlations and anti-correlations. We then derive the corresponding precision matrix, and show that the loopy graph Laplacian matrix Q of a graph G with a negative edge and two self-loops at its end nodes is approximately equivalent. This proves that the eigenvectors of Q - called SGFT - approximates the optimal Karhunen-Lo`eve Transform (KLT). We show the importance of the self-loops in G to ensure Q is positive semi-definite. We prove that the first eigenvector of Q is piecewise constant (PWC), and thus can well approximate a piecewise smooth (PWS) signal like a depth image. Experimental results show that a block-based coding scheme based on SGFT outperforms a previous scheme using graph transforms with only positive edges for several depth images.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here