Multi-scale Wasserstein Shortest-path Graph Kernels for Graph Classification

2 Jun 2022  ·  Wei Ye, Hao Tian, Qijun Chen ·

Graph kernels are conventional methods for computing graph similarities. However, most of the R-convolution graph kernels face two challenges: 1) They cannot compare graphs at multiple different scales, and 2) they do not consider the distributions of substructures when computing the kernel matrix. These two challenges limit their performances. To mitigate the two challenges, we propose a novel graph kernel called the Multi-scale Wasserstein Shortest-Path graph kernel (MWSP), at the heart of which is the multi-scale shortest-path node feature map, of which each element denotes the number of occurrences of a shortest path around a node. A shortest path is represented by the concatenation of all the labels of nodes in it. Since the shortest-path node feature map can only compare graphs at local scales, we incorporate into it the multiple different scales of the graph structure, which are captured by the truncated BFS trees of different depths rooted at each node in a graph. We use the Wasserstein distance to compute the similarity between the multi-scale shortest-path node feature maps of two graphs, considering the distributions of shortest paths. We empirically validate MWSP on various benchmark graph datasets and demonstrate that it achieves state-of-the-art performance on most datasets.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here