Graph Learning with Loss-Guided Training

31 May 2020  ·  Eliav Buchnik, Edith Cohen ·

Classically, ML models trained with stochastic gradient descent (SGD) are designed to minimize the average loss per example and use a distribution of training examples that remains {\em static} in the course of training. Research in recent years demonstrated, empirically and theoretically, that significant acceleration is possible by methods that dynamically adjust the training distribution in the course of training so that training is more focused on examples with higher loss. We explore {\em loss-guided training} in a new domain of node embedding methods pioneered by {\sc DeepWalk}. These methods work with implicit and large set of positive training examples that are generated using random walks on the input graph and therefore are not amenable for typical example selection methods. We propose computationally efficient methods that allow for loss-guided training in this framework. Our empirical evaluation on a rich collection of datasets shows significant acceleration over the baseline static methods, both in terms of total training performed and overall computation.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here