Graph Neural Ordinary Differential Equations

18 Nov 2019Michael PoliStefano MassaroliJunyoung ParkAtsushi YamashitaHajime AsamaJinkyoo Park

We introduce the framework of continuous--depth graph neural networks (GNNs). Graph neural ordinary differential equations (GDEs) are formalized as the counterpart to GNNs where the input-output relationship is determined by a continuum of GNN layers, blending discrete topological structures and differential equations... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet