Graph Regularized Non-negative Matrix Factorization By Maximizing Correntropy

9 May 2014Le LiJianjun YangKaili ZhaoYang XuHonggang ZhangZhuoyi Fan

Non-negative matrix factorization (NMF) has proved effective in many clustering and classification tasks. The classic ways to measure the errors between the original and the reconstructed matrix are $l_2$ distance or Kullback-Leibler (KL) divergence... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet